General introduction Chemorepellent axon guidance molecules in spinal cord injury
نویسندگان
چکیده
Regenerating axons stop growing when they reach the border of the glial-fibrotic scar, presumably because they encounter a potent molecular barrier inhibiting growth cone advance. Chemorepulsive axon guidance molecules provide a non-permissive environment restricting and channeling axon growth in the developing nervous system. These molecules could also act as growth-inhibitory molecules in the regenerating nervous system. The receptors for repulsive guidance cues are expressed in the mature nervous system, suggesting that adult neurons are sensitive to the activity of developmentally active repulsive proteins. Here we summarize recent observations on semaphorins, ephrins and slits in the injured brain and spinal cord, providing evidence that these proteins are major players in inhibiting axonal regeneration and establishing the glial-fibrotic scar.
منابع مشابه
Axon regeneration after spinal cord injury: insight from genetically modified mouse models.
The use of genetically modified mice to study axon regeneration after spinal cord injury has served as a useful in vivo model for both loss-of-function and gain-of-function analysis of candidate proteins. This review discusses the impact of genetically modified mice on axon regeneration after spinal cord injury in the context of axon growth inhibition by myelin, the glial scar, and chemorepelle...
متن کاملRepulsive Wnt signaling inhibits axon regeneration after CNS injury.
Failure of axon regeneration in the mammalian CNS is attributable in part to the presence of various inhibitory molecules, including myelin-associated proteins and proteoglycans enriched in glial scars. Here, we evaluate whether axon guidance molecules also regulate regenerative growth after injury in adulthood. Wnts are a large family of axon guidance molecules that can attract ascending axons...
متن کاملGuidance molecules in axon regeneration.
The regenerative capacity of injured adult mammalian central nervous system (CNS) tissue is very limited. Disease or injury that causes destruction or damage to neuronal networks typically results in permanent neurological deficits. Injury to the spinal cord, for example, interrupts vital ascending and descending fiber tracts of spinally projecting neurons. Because neuronal structures located p...
متن کاملA clinically oriented experiment on the effect of mixed culture of neonate spinal cord transplantation on recovery of spinal cord injury
In spinal cord injuries, direct trauma by edges of sublaxated or dislocated vertebrae and indirect ischemia as a result of vascular injury necrotize the neural tissue. After spinal cord injury, tissue loss appears as micro- or macrocavitation. Accumulations of non-neuronal cells substitute spared tissue and halts axon regrowth. Lack of supporting cells (secreting trophic factors and matrix) agg...
متن کاملEphA4 Blockers Promote Axonal Regeneration and Functional Recovery Following Spinal Cord Injury in Mice
Upregulation and activation of developmental axon guidance molecules, such as semaphorins and members of the Eph receptor tyrosine kinase family and their ligands, the ephrins, play a role in the inhibition of axonal regeneration following injury to the central nervous system. Previously we have demonstrated in a knockout model that axonal regeneration following spinal cord injury is promoted i...
متن کامل